
Green functions for strongly correlated electronic systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 7819

(http://iopscience.iop.org/0953-8984/3/40/003)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 20:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/40
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 3 (1991) 7819-7830. Printed in the UK 

Green functions for strongly correlated electronic systems 

Canio Noce 
Dipartimento di Firica Teoriea E Sue Metodologie per le Scienze hppticate, Unit& 
CISM e INFM di Salemo, Universith di S a l m o ,  84081 Baronksi, Salemo, It+ 

Abstract. By meam uf the path-integral formalism, a general procedure for the 
evaluation of the exact n-point Green functions at liiite tempbratwe is developed 
for the analysis of strongly correlated electron systems. The densities of states for 
two diflerent types of electrons are written by using a non-standard perturbation 
expansion. 

1. Introduction 

Since the discovery of copper oxide superconductors, novel mechanisms have been pro- 
posed to account for the large value of the critical temperature and for the electronic 
properties of these compounds (see, for example, [l]). There is considerable contro- 
versy as to what gives the attractive interaction and indeed many possible ways by 
which the pairing force could be mediated have so far been suggested (see, for example, 
[2]). Even though a complete theoretical understanding of the properties of the new 
superconductors is still lacking, it is now generally agreed that llie phenomenon arises 
from the existence of strong on-site electronic correlations in the highest occupied 
band, formed predominantly by the 3d (2 - y2) orbitals of the copper overlapping 
with the oxygen 2p (2 or y) orbitals in the Cu-0 planes. Motivated by these physical 
considerations, the Hubbard model has proved to be wellsuited to the study of high-T, 
superconductors (HTS). 

In this article we consider an extended version of the Hubbard model where di,  
and p i ,  are operators which describe electrons with spin U (E T, 1) a t  the ith site with 
energy cd and cp, respectively; 1$ (tFj) is the hopping between the i and j for d (p) 
electrons, (i # j), neighbours and \:j is a hopping matrix element, which connects 
different electrons placed at neighbouring sites i and j (i  # j). We also introduce the 
on-site Coulomb repulsion U, and U, between the p and d electroils at the same site. 

Therefore the model IIamiltonian is 

H = C c d d ~ ~ d i , + U , C d ~ , d i l d f i d i , + C c , ~ f , ~ i , + U ~ C ~ f , ~ i l ~ i , ~ i ,  
i,o i p  

i j o  

+ c t : j P ! o P j g  + K j ( d f , P j q  + P i , d j J  t 
i j c  ijo 

where V represents a hybridization between p and d electrons at the same site. 
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It  is worth noting that in many cases a truncated version of this Hamiltonian has 
been used to analyse the HTS and often the limit of infinite U, has been considered 
together with Up = 0 [3-7Iil. 

LIere we study the tofal Hamiltonian, that is we consider all the inter-site and intra- 
site terms which are included in H. In order to solve such a model we separate the 
Hamiltonian into an unperturbed component H ,  and an interaction one If,; H, is the 
sitoindependent part and contains the effects of the on-site strong correlations and, 
in contrast, HI contains the terms responsible for the correlations between different 
sites. 

The unperturbed Hamiltonian can be diagonalized by use of a non-standard path- 
integral technique developed in [SI. From this diagonalization we can calculate the 
‘free’ propagators and thus the full Green functions can be written by means of a 
suitable approximate Dyson equation [9]. 

We want to stress that  in this approach all the calculations are performed a t  
finite temperature and for finite values of the correlations energies U,,and U, and the 
hybridization V. We believe that this technique, as it is able to  take into account the 
effects of the on-site correlations in an exact way, may prove to be very useful in the 
study of HTS. 

In this article we confine ourselves to the introduction of a generalized method 
for treating the Hamiltonian H, that is we calculate the ‘free’ and full propagators of 
the model and then we compute the spectral density of states for d and p electrons. 
The analysis of these densities of states for realistic situations will be the subject of a 
future article. 

The article is organized as follows: in section 2 we solve H, exactly by using 
the path-integral formalism, so we are able to calculate the ‘free’ Green functions. 
From these results we may determine, in section 3, the full propagators by means of 
an approximate Dyson equation and then we can write down the spectral density of 
states for d and p electrons. 

2. The model 

Let us consider the following Hamiltonian 

H = H a +  HI 

where 

ip i ,o  

and 

First, we analyse H,. Since different sites are decoupled in H,, i t  is sufficient to 
consider the onesite case. The Fock space generated by Ha has a finite dimension 
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and therefore the model can be solved completely in terms of 16 x 16 matrices by 
diagonalizing Ho (16 being the dimensionality of the Fock space). 

Indeed, noting that the total number of particles 

N = d t d + p t p  

and the total spin 

S = d t ( a f 2 ) d  + p f ( a f 2 ) p  

with d (2) and p 
classified as shown in table 1. 

ti) are conserved quantities, the eigenstates of H, can be 

Table 1. Eigenstates of Ho where AI = d(cp - <d)l  +4Vz, Az = 
J(?, - cd + u p  - Ud)’ +4v? Ziyizi (i = 7,10,13) are given in the appendix and 
E,, EIO and E13 are the solution of the equation: 2 - z2[3(cP + < a )  + U, + u d ]  - 
%[4vz - 2L; -2C: - < p u p  -<dud -8CpCd -3 rpUd - 3 Y u p  - u p u d ]  +2v2(2Cp + 2Ld + 
u p  + u d )  - (CP + Cd)[(zCp + Up)(ZO f (Id)] = 0. 

Knowledge of the energy levels allows us to determine the analytic expression of the 
n-point Green functions directly from their definitions and, by means of the partition 
function, all the thermodynamics quantities may be easily computed [lo]. However 
due to the large number of the eigenstates of H , ,  this type of computation is very 
tedious. 

Motivated by this fact we here present a solution of the model in a compact form 
by using the path-integral formalism and we give an explicit expression for two-point 
Green functions. 
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The generating functional for temperature Green functions is 

B 
Z[J,Ii] =Tr{ cxp(-pH,)T,exp [l dr ( J t ( r )d ( r )  

where T, orders the operators according to their value of T, with the smallest a t  
right, and J E ($) and I< 3 (E:) are the external sources associated with d and p, 
respectively and p = l/ICBT. 

By dividing the interval 0 < T < p into N parts, Z[J ,  IC] can be written as 

where 

with 

R = ( 1  - p f d / N ) ’  - P U d / N  

w = ( 1  - pC,/N)’ - PV, /N 

Ji E J(r , )  Ii, 5 I i ( r i )  (r, = @ / N )  

and 

2, (W [ J i ,  Kj] = Z ~ N ’ [ J , ] Z ~ N ) [ I ~ j ]  

Here Z5”[Ji] and ZiN)[lii] denote respectively 

Z i N ) [ J ] =  I + n - ’ ( l - P c , / N ) ( J , J {  +J1J,)+C2-’(J,JrJ,J,)  t t t  

z p [ I C ] =  I + w - ’ ( l  -pc,/N)(IitIC~+IC~Ii~)+w-’(Ii,IiftIi,fif). t (7) 

In equation (6) we have assumed the periodic conditions: 



After some easy but tedious calculations [8] we can rewrite ZCN)[J, K] in the form 
N 

(8) 
z ( N ) [ J ,  I{] = , ( N ) n ( N )  IT riA' , ' t lp, ' t l  fi Rl@ 

i=l k l  

where 

Following the same procedure as that outlined in [8] it is easy to derive the expression 

z(~)[J, iq = W N ~ N n ~ l ~ Z ,  ..ciN (9) 
where Q'[J,  If] are 16 x 16 matrices. 

elements of Q are reported in table 2. 
In the limit J = I( = 0 the matrices Q' do not depend on i; the non-vanishing 
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Let us define 

P = SO[O,O]S-' 

where the matrix S is such that P is diagonal. From equation (9) we have 

so that, once the diagonalization of O[O, 01 is performed, the partition function Z[O, 01 
is calculated from equation (5). 

Since Q[O, 01 is a real and symmetric matrix, the eigenvalues P;; = P' are real and 
the 16 x 16 matrix S is orthogonal. In the continuous limit (i.e. N -+ M) it can be 
shown that equation (5) takes the form 

where the energies Ea are given in table 1. 
We now pass to the evaluation of the n-point thermal Green functions and equa- 

tion (9) provides us with a general formula with which to compute them. Tbe analytic 
expression for these functions is given by 
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The quantities wi are defined as 

wl = J: w 5 =  K/ 

w2 = Jr 

w4 = JL 

ws = IC, 

w* = I<&. 

w 3 =  J: w 7 =  K i  

We have 

where the elements of the matrix S = 1imN-- S are listed in the appendix. Besides, 
the only non-zero elements of the matrices B' = limN-m Ei are 

E]. -B' - 1 -B1 
-15 - -26 - &7 - 4 8  - -9.13 = B:0,14 = B:1,15 = 8 : 2 , 1 6  = 

&?9 =&:,lo =&,11 3 = B4,lZ 3 = -.85,1\ - - -E3 4 , 1 4  = -B;,15 - - -B3 4.16 = 
(14) 

-12 E5 - 8 5  - 54 - - -B5 - -E5 = -B5 
E& = -Bz4 = -B7 - B7 - ' 7 

- - E 5  
56 - -78 -9,lO - -11.12 = B?3,14  = 8:5,16 = 

57 - 4 8  - -&,ll = Bl0,lZ = &,15 = -&4,16 = 1. 

Because of the relations 

B' = @ ) t  113 = (114)' B 5  = (86)' B r = (& 8 '  ) 

it is easy to deduce the non-vanishing elements of i32&4@11*. Combining equa- 
tions (11)-(14), the thermal n-point Green functions can be computed, 

We first note that the spin-up and spin-down terms are independent and the Green 
functions do not depend on the spin. Therefore it is sufficient to compute the n-point 
Green functions for a k e d  value of the spin. Using equation (11) we compute the 
exact two-point Green function for d electrons; we have 

G:d>(T2 - T1) = ( d o ( T 2 ) G ( T l ) )  = z[o, 0]-'e[-P(zf~tu~)1e[-~(2~d+rrd)l 

, ( - P e d  sin2 oe(rez)  + J - P 4  cos2 o e ( 4  

+ (;)e(-P4 sin2 @,[r(e.-dl+ (%),(-Ped 

+ e(-Pe~s) cos2 $ e b ( e ~ s - 4 1  + J - P 4  sin2 $,[r(els-et+)l 

+ (;),(-Pee) sin2 ,je[r(--41 + (s)e(-Pw) cosz $e[ r (e~a-edl  

+ Ce(-Peb)(yk 

@e[r(*'-cdl 
2 

2 

+ zk sin 0)2e[r(e"~)I 
k 





+ sin~cos+{e[-(P-~)esl - e[-U7-7)ed} E e ( - r e i ) l  1: . k}. (17) 
k 

We only mention that the computation of two-point Green function determined here 
may also be performed using the diagram method introduced in [ll].  The causal 
temperature Green function for d, p and pd electrons can be easily calculated using 
equations (15)-(17) and the well known formula 

G(r)  = -[Q(r)G,(T) - @(-r)G,(T + P)]. 

3. Spectral functions for p and d electrons 

In order to solve the model perturbatively we consider the hopping terms between 
different sites H, as the pertubation. Due to the presence in H, of the two-particle 
correlations U ,  and Ud the Wick theorem cannot be applied in this case. However by 
neglecting the fluctuations one can decouple the 'time'-ordered products of p and d 
electrons operators by means of a Wick-like factorization and an approximate Dyson 
equation for the full Green functions of the Hamiltonian H can be written. 

Nevertheless in such an approach the contributions coming from the Coulomb 
correlations Up and Ud, which play a crucial role in the HTS, are exactly evaluated so 
that we are confident that the effects of fluctuations are really negligible. 

We want to point out that when there are no electronic correlations (Up = U, = 0) 
the Wick theorem can be applied and then the corresponding Dyson equation for the 
full Green functions is exact. In our case, where electronic on-site correlations are 
present, the Wick theorem no longer applies; therefore the Dyson equation is approx- 
imate. This approximation corresponds to the hypothesis that the interactions of the 
electrons on the same site are the most important and that the interactions of elec- 
trons on other sites may be neglected. This implies that all Green functions involving 
more than two sites are approximated in terms of Green functions involving not more 
than two sites [9, 131. In this sense, this approximation represents a generalization of 
the Hubbard I [13] approximation because in our model there is also a hybridization 
term K j .  

The density of states for p and d electrons may be easily calculated by using the 
well known relationships 

p,(E)  = - ( l /Nx)z I1nGpp(k ,E)  
k 

f d ( E )  = -(1/Nn)zImGdd(ki E )  
k 
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where G,, and Gdd are the full Green functions for p and d electrons respectively. 
These Green functions have been deduced from the following Dyson equation [9, 121: 

where 

is the full matrix propagator, G,,(k,w,) being the Fourier tranform of 

Gab,ij(T = -(T7[a.9i(T)6:j(T')1) 
G:(k,un) = dt(w,) is the unpertubed one and 

with 

We stress that  C:(w,) does not depend on k because of the absencc of a finite band 
width in the unperturbed Hamiltonian H, .  

From (18)-(20) we obtain the equations 

where we have dropped the dummy subscript U near the free Green function. By using 
the results of the previous section, the full propagators (19) are easily obtained from 
equations (21). 

From full Green functions G,, and Gdd we calculate the density of states pp and 

In order to compute these quantities expIicitly we must specify the form of the 

The analysis of specific situation such as nearest-neighbours hopping correlation 

fd. 

hopping terms z k ,  Ek and Vk. 

and/or more complicated cases will be the subject of a forthcoming article. 



det 
b - 2  -2uah u266 
-uai a & + u 2 b 6 - x  -uz&b = 0. 
u266 -2uib 6 - x  
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In the limit N -+ m the sulutions of the system takes the form: 

(zi)z = 4 v 2 ( 2 ~ ,  + U, - E , ) ~ / D ,  

(zi)2 = 4v2(2fd + ud - E ~ ) ~ / Q  

(yi)’ = (2fp + U, - Ei)’(Z<d t U d  - Ei)’/Di 

where 

Di = 4V2[(2fp t Up - Ed)’ + (264 t U, - E;)’] + 2(2<, t Up - Ei)’(2fd +U, - E;)’. 
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